skip to main content


Search for: All records

Creators/Authors contains: "Sarnelle, Orlando"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Laboratory studies have revealed thatDaphniaspecies can evolve to tolerate toxic cyanobacteria in the diet. Specifically,Daphniafrom eutrophic lakes where cyanobacteria are common tend to have higher growth rates and survival when fed toxic cyanobacteria than populations from oligotrophic environments with low abundance of cyanobacteria.

    We conducted an in‐lake mesocosm (i.e. limnocorral) experiment during the autumn of 2009 to assess the effects of nutrient enrichment on clonal evolution inDaphnia pulicaria. As nutrient enrichment often favours grazing‐resistant cyanobacteria, we hypothesised that fertilisation would influence the genotypic composition ofD. pulicariathat vary in tolerance to cyanobacteria. Mesocosms were fertilised to manipulate phytoplankton and cyanobacterial abundance and concentrations of a cyanobacterial toxin (microcystin). Thus, half of the mesocosms were high‐nutrient and half were low‐nutrient. We then stocked half of the mesocosms with a mixture of six genetically‐distinctD. pulicariagenotypes (three genotypes from oligotrophic lakes and three from eutrophic lakes) leaving half of the mesocosmsDaphnia‐free to assess grazing effects, using a fully factorial design.

    When compared to the low nutrient treatment, high nutrient mesocosms had nearly five‐fold higher chlorophyllaconcentrations, eight‐fold higher cyanobacterial dry biomass, and three‐fold higher microcystin levels at the start of the experiment. In contrast, low nutrient mesocosms had phytoplankton concentrations typical of mesotrophic lakes.

    Fertilisation strongly affectedDaphniagenetic diversity in the mesocosms. FinalDaphniagenotype diversity in the mesocosms with low‐cyanobacteria (richness = 5.83, Shannon–Weiner index = 1.55, evenness = 0.88) was similar to the initial stocked diversity (richness = 5.50, Shannon–Weiner index = 1.48, evenness = 0.87). In contrast, final diversity in fertilised mesocosms with high cyanobacteria was greatly reduced (richness = 2, Shannon–Weiner index = 0.17), with oneDaphniagenotype that originated from the most‐eutrophic lake being highly dominant (evenness = 0.25). Thus, eutrophication mediated strong clonal selection of a cyanobacteria‐tolerantDaphniagenotype over just 10 weeks.

    By the end of the experiment,Daphniasignificantly reduced phytoplankton biomass in the high‐nutrient, but not in the low‐nutrient treatment. This difference in effect size was largely driven by the five‐fold higher initial phytoplankton biomass in the high‐nutrient treatment. Thus, the ability ofDaphniato reduce phytoplankton biomass in eutrophic lakes may be driven more so by the abundance of planktivorous fishes, as opposed to the prevalence of cyanobacteria and their associated toxins.

     
    more » « less
  2. Abstract

    Intraspecific niche divergence is an important driver of species range, population abundance and impacts on ecosystem functions. Genetic changes are the primary focus when studying intraspecific divergence; however, the role of ecological interactions, particularly host‐microbiome symbioses, is receiving increased attention. The relative importance of these evolutionary and ecological mechanisms has seen only limited evaluation. To address this question, we usedMicrocystis aeruginosa, the globally distributed cyanobacterium that dominates freshwater harmful algal blooms. These blooms have been increasing in occurrence and intensity worldwide, causing major economic and ecological damages. We evaluated 46 isolates ofM. aeruginosaand their microbiomes,collected from 14 lakes in Michigan, USA, that vary over 20‐fold in phosphorus levels, the primary limiting nutrient in freshwater systems. Genomes ofM. aeruginosadiverged along this phosphorus gradient in genomic architecture and protein functions. Fitness in low‐phosphorus lakes corresponded with additional shifts withinM. aeruginosaincluding genome‐wide reductions in nitrogen use, an expansion of phosphorus assimilation genes and an alternative life history strategy of nonclonal colony formation. In addition to host shifts, despite culturing in common‐garden conditions, host‐microbiomes diverged along the gradient in taxonomy, but converged in function with evidence of metabolic interdependence between the host and its microbiome. Divergence corresponded with a physiological trade‐off between fitness in low‐phosphorus environments and growth rate in phosphorus‐rich conditions. Co‐occurrence of genotypes adapted to different nutrient environments in phosphorus‐rich lakes may have critical implications for understanding howM. aeruginosablooms persist after initial nutrient depletion. Ultimately, we demonstrate that the intertwined effects of genome evolution, host life history strategy and ecological interactions between a host and its microbiome correspond with an intraspecific niche shift with important implications for whole ecosystem function.

     
    more » « less
  3. Abstract

    Ecosystems across the United States are changing in complex and unpredictable ways and analysis of these changes requires coordinated, long‐term research. This paper is a product of a synthesis effort of the U.S. National Science Foundation funded Long‐Term Ecological Research (LTER) network addressing the LTER core research area of “populations and communities.” This analysis revealed that each LTER site had at least one compelling “story” about what their site would look like in 50–100 yr. As the stories were prepared, themes emerged, and the stories were group into papers along five themes: state change, connectivity, resilience, time lags, and cascading effects. This paper addresses the cascading effects theme and includes stories from the Bonanza Creek (boreal), Kellogg Biological Station (agricultural and freshwater), Palmer (Antarctica), and Harvard Forest (temperate forest) LTER sites. We define cascading effects very broadly to include a wide array of unforeseen chains of events that result from a variety of actions or changes in a system. While climate change is having important direct effects on boreal forests, indirect effects mediated by fire activity—severity, size, and return interval—have large cascading effects over the long term. In northeastern temperate forests, legacies of human management and disturbance affect the composition of current forests, which creates a cascade of effects that interact with the climate‐facilitated invasion of an exotic pest. In Antarctica, declining sea ice creates a cascade of effects including declines in Adèlie and increases in Gentoo penguins, changes in phytoplankton, and consequent changes in zooplankton populations. An invasion of an exotic species of lady beetle is likely to have important future effects on pest control and conservation of native species in agricultural landscapes. New studies of zebra mussels, a well‐studied invader, have established links between climate, the heat tolerance of the mussels, and harmful algal blooms. Collectively, these stories highlight the need for long‐term studies to sort out the complexities of different types of ecological cascades. The diversity of sites within the LTER network facilitates the emergence of overarching concepts about trophic interactions as an important driver of ecosystem structure, function, services, and futures.

     
    more » « less